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a b s t r a c t

Laplace’s equation with mixed boundary conditions, that is, Dirichlet conditions on parts of
the boundary and Neumann conditions on the remaining contiguous parts, is solved on an
interior planar domain using an integral equation method. Rapid execution and high accu-
racy is obtained by combining equations which are of Fredholm’s second kind with com-
pact operators on almost the entire boundary with a recursive compressed inverse
preconditioning technique. Then an elastic problem with mixed boundary conditions is for-
mulated and solved in an analogous manner and with similar results. This opens up for the
rapid and accurate solution of several elliptic problems of mixed type.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The need to solve elliptic problems with different types of boundary conditions on different parts of a connected bound-
ary often arises in computational physics. Elastic specimens partly held fixed and partly subjected to traction [2,18] and
loaded composites with interface cracks [6,17] are common setups with mixed Dirichlet- and Neumann-type conditions.
More generally, elliptic problems for multiphase materials where some continuity conditions hold on internal interfaces
and loads are applied to a connected outer boundary belong to this class. Grain boundary diffusion in finite-size polycrystals
[20,24] and coupled Stokes and Darcy flow [22] are two examples. Solvers based on integral equations, which are superior for
pure boundary conditions, are not always applicable for mixed conditions. When they do apply and the conditions vary on a
connected boundary, see [11] for an overview, they are often less advantageous than for pure boundary conditions.

It is hard to find integral equations for mixed problems that are of Fredholm’s second kind with operators that are com-
pact on the entire boundary. This is the essential difficulty when boundary conditions vary on contiguous boundary parts
[23]. The second-kind-compact-operator property is what makes integral equation methods competitive. This property helps
in retaining the condition number of the underlying mathematical problem throughout the solution process.

Using primitive functions of Neumann data, one can sometimes find integral equations for mixed planar problems that
are singular with discontinuous coefficients in the sense of Section 116 of [15]. Such equations may require reduction,
that is, the application of a pseudo-inverse to the dominant operator, for well-posedness. A great advantage with reduction
. All rights reserved.
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is that it transforms a singular integral equation into one of Fredholm’s second kind with operators that are compact on the
entire boundary, provided the boundary is smooth. Reduction is certainly efficient when high accuracy is of interest [6,9].
Drawbacks include that it takes some effort to construct the pseudo-inverse and that it is hard to treat non-smooth bound-
aries [3] and boundary conditions that change type more than once. Mikhlin uses reduction to derive a second kind equation
with compact operators for the mixed problem of the theory of elasticity, see Eq. (17) of Section 72 in [13]. This equation is
not written out on explicit form and has, to our knowledge, never been used for numerics.

If one gives up the search for second kind equations with compact operators and is content with discretizing and solving
just any integral equation, chiefly for the benefit of dimensionality reduction, the numerical results could suffer. Especially so
in the vicinity of singular boundary points, that is, points where the boundary conditions change type and where the solution
may have a complicated asymptotic behavior. Adaptive mesh refinement close to such points is often not a good idea since it
can excite severe ill-conditioning. In general, any attempt at mesh refinement increases ill-conditioning in the absence of the
second-kind-compact-operator property.

This paper takes a new approach to mixed boundary conditions. Like the classic works [13,15] we strive for integral equa-
tions that behave as if they were of Fredholm’s second kind with compact operators everywhere. But while the classic works
use reduction to achieve this, we use recursive compressed inverse preconditioning (a local multilevel technique developed to
deal with weaker singularities stemming from boundary irregularities [8]). The advantages with trading reduction for recur-
sive compressed inverse preconditioning are flexibility in modeling and simplicity in programming. Several types of compli-
cations can be treated within the same framework.

For brevity we only consider two problems: Laplace’s equation in the plane, introduced in Section 3 and used to illustrate
general ideas, and planar elasticity, chosen as to let these ideas work in a more challenging setting in Section 9. A key ingre-
dient in the transition from Laplace’s equation to elasticity is the particular choice of representation (55) and (56). Sections 2,
5–7 discuss quadrature techniques for non-smooth kernels and review recursive compressed inverse preconditioning in the
present environment. The computational process is straight-forward, once these issues are settled, and Sections 8 and 10
present very accurate results.

2. Discretization and quadrature

We use Nyström discretization for the integral equations and composite 16-point Gauss–Legendre quadrature as our ba-
sic quadrature tool. To keep the notation short we make no distinction between points or vectors in a real plane R2 and
points in a complex plane C. All points will be denoted z or s. Let C be the smooth boundary of a simply connected domain
X and let C be given orientation. Let sðtÞ, ta < t 6 tb, be a parameterization of C and let there be nK quadrature panels Kj,
j ¼ 1; . . . ;nK, of approximately equal length placed on C. Then one can easily compute N ¼ 16nK nodes tj and weights
wj; j ¼ 1; . . . ;N, associated with integration in t. Let f be a layer density on C. The parameterization allows us to view f both
as function of position f ðsÞ and of parameter f ðtÞ. The argument indicates which view is taken in a particular situation. Dif-
ferentiation with respect to parameter t is indicated with a prime. The abbreviations sj ¼ sðtjÞ; fj ¼ f ðtjÞ; s0j ¼ s0ðtjÞ, and
f 0j ¼ f 0ðtjÞ are used.

We shall discretize several integral operators on C. If the integral kernel Kðs; zÞ and layer density f ðsÞ are piecewise
smooth, the basic quadrature
Z
C

f ðsÞKðs; sjÞds ¼
Z tb

ta

f ðtÞKðsðtÞ; sjÞs0ðtÞdt �
XN

k¼1

fkKðsk; sjÞs0kwk ð1Þ
should be accurate. If Kðs; zÞ is singular for s ¼ z, special techniques are needed to retain high accuracy. This section reviews
such techniques. Note that Nyström discretization of an integral equation means discretization of the integral operators at
each quadrature point sj; j ¼ 1; . . . ;N. The result of the discretization is a linear system with a square system matrix.

2.1. The Cauchy singular operator

We begin with the Cauchy singular integral operator
MCf ðsjÞ ¼
1
pi

Z
C

f ðsÞds
s� sj

; sj 2 C: ð2Þ
The integral is to be interpreted in the principal value sense. One option is to use global regularization
MCf ðsjÞ ¼ fj þ
1
pi

Z
C

ðf ðsÞ � fjÞds
s� sj

; sj 2 C: ð3Þ
The integral has a continuous integrand when f ðsÞ is continuous. It can be discretized with basic quadrature and differen-
tiation of f ðtÞ based on panelwise polynomial interpolation at the Legendre nodes.

A drawback with global regularization is that it may involve a fair amount of row summation for the diagonal elements of
the system matrix. A cheaper alternative, in this respect, is local regularization
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MCf ðsjÞ ¼
1
pi

Z
C�

f ðsÞds
s� sj

þ fj

pi
log

sb � sj

sa � sj

� �
þ 1

pi

Z
CH

ðf ðsÞ � fjÞds
s� sj

; ð4Þ
where C� ¼ C n CH and the short boundary part CH contains sj. It is assumed that CH starts at sa ¼ sðtaÞ, ends at sb ¼ sðtbÞ,
consists of three consecutive panels KH

1 ; K
H

2 , and KH

3 , say, with sj situated on the middle panel KH

2 . The integrand of the first
integral of (4) is smooth when consecutive panels do not differ too much in length. The integrand of the second integral is
smooth if f ðsÞ is smooth on CH. Note that the value of logð�Þ in (4), produced by a computer, must be corrected with �pi so as
to correspond to the principal value.

When f ðsÞ has a discontinuity at one end of KH

2 , neither global- nor local regularization is efficient. Then we suggest local
panelwise evaluation
MCf ðsjÞ ¼
1
pi

Z
C�

f ðsÞds
s� sj

þ
X3

l¼1

1
pi

Z
KH

l

f ðsÞds
s� sj

; sj 2 KH

2 ; ð5Þ
where the integrand of the first integral is smooth and each term in the sum is computed individually via product integra-
tion. We specialize to the case of KH

l being an open arc in the complex plane with starting point -1 and endpoint 1. General
arcs can be given this property by translation, rotation, and scaling. 15th-degree accurate product integration weights for the
integrals
Z

KH

l

f ðsÞds
s� sj

; sj 2 KH

2 ð6Þ
can then be constructed from the observation that the quantities
pk ¼
Z 1

�1

sk�1ds
s� sj

; k ¼ 1; . . . ;16 ð7Þ
can be computed from the simple recursion
pkþ1 ¼ sjpk þ ck; k ¼ 1; . . . ; ð8Þ
where
ck ¼
1� ð�1Þk

k
: ð9Þ
Once the pk are available, the product integration weights can be obtained, for example, by solving a 16� 16 Vandermonde
system. See Section 5 of [7] for details and alternatives.

2.2. The hypersingular operator

Next, we discretize the hypersingular integral operator
MHf ðsjÞ ¼
1
pi

Z
C

f ðsÞds
ðs� sjÞ2

; sj 2 C; ð10Þ
which is to be interpreted in the sense of the Hadamard finite part. The three evaluation techniques of Section 2.1 can in
principle be applied here, too. Global regularization, however, becomes clumsy whenever f ðsÞ is not everywhere smooth
and we shall not use it. Local regularization gives
MHf ðsjÞ ¼
1
pi

Z
C�

f ðsÞds
ðs� sjÞ2

� fj

pi
1

sb � sj
� 1

sa � sj

� �
þ

f 0j
s0jpi

log
sb � sj

sa � sj

� �

þ 1
pi

Z tb

ta

f ðtÞ � fj � f 0j =s0jðsðtÞ � sjÞ
� �

ðsðtÞ � sjÞ2
s0ðtÞdt: ð11Þ
Product integration quadrature weights for local panelwise evaluation
MHf ðsjÞ ¼
1
pi

Z
C�

f ðsÞds
ðs� sjÞ2

þ
X3

l¼1

1
pi

Z
KH

l

f ðsÞds
ðs� sjÞ2

; sj 2 KH

2 ð12Þ
can be computed by translation, rotation, and scaling and from the observation that the quantities
rk ¼
Z 1

�1

sk�1 ds
ðs� sjÞ2

k ¼ 1; . . . ;16 ð13Þ
can be expressed as
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rk ¼ �
1

1� sj
þ ð�1Þk�1

1þ sj

 !
þ ðk� 1Þpk�1; ð14Þ
where pk is as in (7) and p0 ¼ 0.

2.3. The logarithmic operator

Lastly, we discretize the logarithmic integral operator
MLf ðsjÞ ¼
Z

C
f ðsÞ log js� sjjdjsj; sj 2 C: ð15Þ
In a composite trapezoidal rule setting, (15) can be discretized using Fourier methods, see Chapter 7.2.2 of [1], or with mod-
ified weights, See Section 6 of [12]. In the composite Gauss–Legendre setting we suggest local panelwise evaluation
MLf ðsjÞ ¼
Z

C�
f ðsÞ log js� sjjdjsj þ

X3

l¼1

Z tbl

tal

f ðtÞ log
ðtbl � talÞ

2
ðsðtÞ � sjÞ
ðt � tjÞ

����
����js0ðtÞjdt

þ
X3

l¼1

ðtbl � talÞ
2

Z 1

�1
f ðtlðxÞÞjs0ðtlðxÞÞj log jx� xljjdx; ð16Þ
where tal and tbl are the starting point and endpoint, in parameter, of KH

l . Also, in (16) we have made use of the auxiliary
parameterizations tlðxÞ ¼ xðtbl � talÞ=2þ ðtbl þ talÞ=2, so that xlj ¼ ð2tj � tal � tblÞ=ðtbl � talÞ.

The integrands of the first four integrals of (16) are smooth and basic quadrature can be used. The integrands of the three
last integrals are not smooth, but 15-degree accurate product integration quadrature weights can be computed from the
observation that the quantities
qk ¼
Z 1

�1
xk�1 log jx� xjjdx; k ¼ 1; . . . ;16; ð17Þ
can be expressed as
qk ¼
1
k

log j1� xjj �
ð�1Þk

k
log j1þ xjj �

pkþ1

k
; ð18Þ
where pk is as in (7) and (8), but with s and sj replaced with x and xj.
We remark that when integration in (15) is with respect to ds rather than to djsj, one should replace js0ðtÞj with s0ðtÞ in

(16).
3. Integral equations for Laplace’s equation

We seek a function UðzÞ, harmonic in X, such that
lim
X3s!z

UðsÞ ¼ gDðzÞ; z 2 CD; ð19Þ

lim
X3s!z

nz � rUðsÞ ¼ gNðzÞ; z 2 CN; ð20Þ
where gDðzÞ is Dirichlet data on the boundary part CD; gNðzÞ is Neumann data on the boundary part CN;CD [ CN ¼ C, and nz is
the outward unit normal of C at z.

Let now UðzÞ; z 2 X [ CN, be represented by a real density qðzÞ; z 2 C,
UðzÞ ¼ 1
p

Z
CD

qðsÞI ds
s� z

� �
� 1

p

Z
CN

qðsÞ log js� zjdjsj; z 2 X [ CN: ð21Þ
Insertion of (21) into (19) and (20) gives the system
qðzÞ þ 1
p

Z
CD

qðsÞI ds
s� z

� �
� 1

p

Z
CN

qðsÞ log js� zjdjsj ¼ gDðzÞ; z 2 CD; ð22Þ

qðzÞ þ 1
p

Z
CD

qðsÞI nzds
ðs� zÞ2

( )
þ 1

p

Z
CN

qðsÞR nzdjsj
s� z

� �
¼ gNðzÞ; z 2 CN: ð23Þ
This system is not of Fredholm’s second kind with compact operators on the entire boundary. But away from the singular
boundary points it is. More precisely, if the kernels of the integral operators are set to zero when s and z simultaneously
lie close to a singular boundary point, then the integral operators are compact.



8896 J. Helsing / Journal of Computational Physics 228 (2009) 8892–8907
Once the system (22) and (23) is solved for qðzÞ, the function UðzÞ can be computed for z 2 X [ CN via (21). The gradient of
UðzÞ can be computed in X via differentiation of (21). The normal derivative of UðzÞ at CD is
Fig. 1.
bounda
sources
nz � rUðzÞ ¼ 1
p

Z
CD

qðsÞI nz ds
ðs� zÞ2

( )
þ 1

p

Z
CN

qðsÞR nz djsj
s� z

� �
; z 2 CD: ð24Þ
4. Test geometry, hardware, and software

We use the same geometry in all numerical experiments – an interior domain with boundary parameterization
sðtÞ ¼ ð1þ 0:3 cos 5tÞeit ; �p < t 6 p; ð25Þ
see Fig. 1. This boundary is simple to produce, yet not trivial from a numerical viewpoint since its curvature is varying. The
boundary parts CD and CN are
sðtÞ 2 CD; �p < t < �p
2
; and sðtÞ 2 CN; �p

2
< t < p: ð26Þ
Compressed inverses will be constructed in local coordinate systems centered around the singular boundary points
c1 ¼ sð�p=2Þ and c2 ¼ sðpÞ. Some reference solutions will be expressed in terms of sources at the points Sk.

All numerical experiments are performed in MATLAB version 7.6 and executed on an ordinary workstation equipped with
an IntelCore2 Duo E8400 CPU at 3.00 GHz. Small linear systems are solved with MATLAB’s built in solvers. The GMRES iterative
solver [19] with a low-threshold stagnation avoiding technique [7] is used for larger systems. System matrices are formed
explicitly, but the fast multipole method [4,5], also implemented in MATLAB and therefore not particularly fast, is used for the
evaluation of stress fields in the last example of Section 10.
5. Compressed discretization

The following three sections are about the discretization and solution of the system (22) and (23). The overall goal is sta-
bility and computational economy. The plan is to seek a right inverse preconditioner, called R, and apply it analytically to the
difficult parts of (22) and (23) – corresponding to interaction close to singular boundary points – and numerically to the
remainder. In order to compute R, we need a grid on a mesh that is highly refined close to the singular boundary points.
But once R is obtained we shall solve (22) and (23) on a coarse grid. This section defines R. Section 6 is about the fast
−1.5 −1 −0.5 0 0.5 1 1.5
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Γ
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}

Test domain X with boundary C ¼ CD [ CN given by (25) and (26). A coarse mesh of 84 quadrature panels is constructed on C. Two parts of the
ry, CH

1 and CH

2 , cover the four coarse panels closest to the singular boundary points c1 and c2 where the boundary conditions change type. Three
Sk , for the generation of some boundary conditions, are marked by ‘x’.
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construction of R. Section 7 is on the reconstruction of qðzÞ on the fine grid from computed values on the coarse grid. Much of
this material is covered in greater detail in Ref. [8].

We discretize the system (22) and (23) on two meshes: a coarse mesh and a fine mesh. The coarse mesh has quadrature
panels of approximately equal length and is arranged so that no panel has a singular boundary point as an interior point, see
Fig. 1. The fine mesh is constructed from the coarse mesh by repeated binary subdivision of coarse panels neighboring to
singular boundary points. The subdivision is done with respect to length in parameter and in direction towards the singular
boundary points. A mesh with n such subdivision is called an n-ply refined mesh. Let K denote the integral operator in (22)
and (23). Using Nyström discretization we arrive at two grids and two linear systems
Icoa þ Kcoað Þqcoa ¼ gcoa; ð27Þ
Ifin þ Kfinð Þqfin ¼ gfin; ð28Þ
where I is the identity matrix, K is the discretization of K, and q and g is the discretized solution and the right hand side,
respectively.

Let Kðs; zÞ denote the kernel of K. Split Kðs; zÞ into two functions
Kðs; zÞ ¼ KHðs; zÞ þ K�ðs; zÞ; ð29Þ
where KHðs; zÞ is zero except for when s and z simultaneously lie on a part of C covering the four coarse panels closest to a
singular boundary point. There K�ðs; zÞ is zero. There are two boundary parts of this type in Fig. 1, denoted CH

1 and CH

2 . The
kernel split (29) corresponds to an operator split and a matrix split
K ¼ KH þ K� and K ¼ KH þ K�: ð30Þ
The matrix elements of KH

coa will, for example, differ from zero only for two 64� 64 blocks.
We point out that the integral operator K� is compact and should be easy to resolve. The operator KH, on the other hand, is

not compact and is harder to resolve. It, therefore, seems inefficient to explicitly discretize K� and KH on the same fine mesh.
Indeed, for sufficiently resolved coarse meshes and for sufficiently large CH

1 and CH

2 one can express K�fin in terms of K�coa as
K�fin ¼ PK�coaPT
W : ð31Þ
Here P is a prolongation operator that performs panelwise 15th-degree polynomial interpolation in parameter from the
coarse grid to the fine grid when acting on column vectors from the left. PW is a weighted prolongation operator
PW ¼WfinPW�1
coa; ð32Þ
whose transpose performs panelwise 15th-degree polynomial interpolation in the variable of integration when acting on
discretized integral operators from the right. W of (32) is a diagonal matrix containing the quadrature weights wk. One
can interpret (31) as follows: the matrix on the left hand side corresponds to an overresolved discretization of a compact
integral operator and has low rank. Therefore it could be compressed. A truncated singular value decomposition is one op-
tion. The right hand side of (31), which corresponds to prolongation of off-diagonal matrix blocks, is a computationally
cheaper alternative. It does not involve any computations at all, apart from the evaluation of matrix elements. We shall as-
sume that the coarse mesh is sufficiently resolved for (31) to hold to high accuracy. We shall also assume that
gfin ¼ Pgcoa ð33Þ
holds to high accuracy.
Now one can find an equation, essentially on the coarse grid, which has the second-kind-compact-operator property and

whose solution has the same discretization error as the solution to (28) on the fine grid. This compressed equation can be
expressed in terms of a transformed discrete density ~qcoa and reads
Icoa þ K�coaR
	 


~qcoa ¼ gcoa; ð34Þ
see Section 6 of [8] for details in its derivation. In (34) only the compressed weighted inverse
R ¼ PT
W Ifin þ KH

fin

	 
�1
P; ð35Þ
needs the fine grid for its computation. The matrix R differs from the identity matrix for two diagonal 64� 64 blocks. In view
of PT

W P ¼ Icoa, which holds since the weights wk are Gaussian, one may interpret R as a projection of an inverse right precon-
ditioner to (28) onto a space of piecewise 15th-degree polynomials on the coarse mesh.

The relation between the original and the transformed density is
qcoa ¼ S~qcoa; ð36Þ
where the compressed un-weighted inverse
S ¼ Q Ifin þ KH

fin

	 
�1
P ð37Þ
also has to be computed on the fine grid. Here Q is a restriction operator in the opposite direction of P and QP ¼ Icoa.
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Note that qðzÞ is needed in (21) for the evaluation UðzÞ. When z is away from C, the kernels of (21) are smooth and can be
well resolved by polynomials. The density qðzÞ is, however, not everywhere smooth. Therefore, qcoa of (36) is difficult to inte-
grate. Rather, one should use the discrete weight-corrected density
Fig. 2.
meshes
q̂coa ¼ R~qcoa ð38Þ
in the discretization of (21) and S is then not needed.
When UðzÞ on CN and nz � rUðzÞ on CD are of interest, one could use a combination of (21) and (24) as post-processor. Now

neither the integral kernels nor qðzÞ are everywhere smooth, but accurate values on the coarse grid can still be obtained in
terms of ~qcoa. Let Lq be the discretization of (21) on CN and (24). The quantities sought can then be expressed as
QLfinqfin ¼ L�coaq̂coa þ X~qcoa; ð39Þ
where X is the compressed block-diagonal matrix
X ¼ QLH

fin Ifin þ KH

fin

	 
�1
P: ð40Þ
6. Recursive construction of R

The definitions of the compressed matrices R of (35), S of (37), and X of (40) are similar. Their direct numerical construc-
tion is costly and ill-conditioned. Recursive compression is a better alternative. This multilevel technique, executed in local
coordinates, is fast and avoids the increased conditioning that normally follows from progressive refinement close to singu-
lar boundary points. This section summarizes and extends results from Section 7 of [8]. Differences between the present pa-
per and [8] are:

� In [8], the singular behavior of qðzÞ is induced by a non-smooth C. The integral operators themselves do not change along
C. The present paper treats the reverse situation. The integral operators vary while C is smooth. This may induce stronger
singularities.

� The boundary part around a singular boundary point ci on which compression takes place is denoted Ci in [8]. It typically
covers two coarse panels. In the present paper this boundary part is denoted CH

i and covers four coarse panels.
� Eqs. (69) and (70) of [8] are not generally valid and are not used in the present paper.

Although R; S, and X cannot be computed from one another, one can find useful synergies in their computation. The ma-
trix R is the easiest to compute. This is so since it involves prolongation. Prolongation operators are easy to factorize and no
information is lost in their repeated application on progressively finer grids. This helps in forming a fast recursion. Restriction
operators, present in S and X, are harder to deal with. Information is lost if they are applied repeatedly on progressively coar-
ser grids. Therefore, we begin with the construction of R. By-products of this scheme will then be used for the action of S and
X in Section 7. We specialize to the 64� 64 block of R which describes interaction on CH

1 . The block which describes inter-
action on CH

2 can be treated analogously.
Consider an n-ply refined mesh on CH

1 , see the lower left image of Fig. 2. Let CH

1ði;nÞ;1 6 i 6 n, denote boundary parts cov-
ering the 2ðiþ 2Þ innermost panels of this n-ply refined mesh, see the right images of Fig. 2. Let Gib denote a grid on a simply
refined mesh on CH

1ði;nÞ. Let K, as in Section 5, be the integral operator in (22) and (23). Let the 96� 96 matrices Ki be the
discretization of K on Gib. Let I be a 96� 96 identity matrix. Introduce the splits
γ1

coarse mesh on Γ1
∗

5−ply refined mesh on Γ1
∗

simply refined mesh on Γ1(4,5)
∗

simply refined mesh on Γ1(3,5)
∗

simply refined mesh on Γ1(2,5)
∗

Placement of quadrature panels on the boundary part CH

1 , surrounding the singular boundary point c1. Left: meshes on CH

1 . Right: simply refined
on progressively smaller parts of CH

1 called CH

1ði;nÞ with i ¼ 4;3;2 and n ¼ 5. See Fig. 1 for the entire coarse mesh.
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Ki ¼ KH

i þ K�i and I ¼ IH þ I�; ð41Þ
where superscript ‘H’ means that matrix elements with both indices in the set f17 : 80g are carried over from the left hand
side, the remaining elements being zero. Superscript ‘�’ means that elements with at least one index in the set f1 : 16g or
f81 : 96g are carried over from the left hand side, the remaining elements being zero.

A few more matrices are needed. Let the diagonal 96� 96 matrix W1 contain quadrature weights associated with a grid
on a simply refined mesh on CH

1 . Let the 96� 64 matrix Pbc be a prolongation operator that performs panelwise 15th-degree
polynomial interpolation in parameter from a grid on a coarse four-panel mesh to a grid on a simply refined six-panel mesh
compatible with mesh refinement on CH

1 . If the coarse panels on CH

1 are equisized in parameter this means that Pbc prolongs
from a mesh on [�2, 2] with breakpoints {�2, �1, 0, 1, 2} to a mesh on that same interval with breakpoints {�2, �1, �0.5, 0,
0.5, 1, 2}. Let the diagonal 64� 64 matrix W0 contain the quadrature weights of the coarse grid on CH

1 . Let
PWbc ¼W1PbcW�1
0 : ð42Þ
Now the 64� 64 block of R which describes interaction on CH

1 can be expressed as Rn and computed from the simple
recursion
Ri ¼ PT
Wbc FfR�1

i�1g þ I� þ K�i
� ��1

Pbc; i ¼ 1; . . . ;n; ð43Þ
where
FfR�1
0 g ¼ IH þ KH

1 ð44Þ
is used for initialization. Here Ff�g is an operator which creates a frame of width 16 of zeros around its matrix argument.
Note that the recursion (43) starts at i ¼ 1 and that n steps give a R which, when used in (34), produces a solution with
the same discretization error as the solution of (28) on an n-ply refined mesh. This will be further illustrated in the numerical
examples of Sections 8 and 10, where we repeatedly compare (28)–(34) and see how they converge identically with n until
(28) suddenly becomes unstable. Besides stability, the other advantage with (34) and (43) is computational economy. Each
step in (43) amounts to setting up the 96� 96 matrix K�i , inverting the 64� 64 matrix Ri�1 available from the previous recur-
sion step, solving a linear system with Pbc as right hand side, and multiplying with PT

Wbc. The preconditioned system (34) has
relatively few unknowns and converges rapidly in GMRES thanks to a clustered spectrum.

The condition number of Ri in (43) could be very high for i	 n. This ill-conditioning is chiefly due to bad scaling and may
be harmful to matrix inversion. It can be cured as follows: Ri has properties similar to Iþ Ki. This 96� 96 matrix can be par-
titioned into four 48� 48 blocks. The two diagonal blocks are dominated by elements of unit magnitude. The two off-diag-
onal blocks, which stem from hypersingular or logarithmic interaction between points on CH

1ði;nÞ, are dominated by elements
that vary greatly with recursion step i. The hypersingular block has elements proportional to 1=si, where si is the length of
CH

1ði;nÞ. The logarithmic block has elements proportional to si logðsiÞ. Therefore, to better balance Ri, a diagonal similarity
transformation is carried out prior to its inversion and afterwards carried out in the opposite direction. The transformation
matrix has diagonal entries unity and 1=si. A similar balancing is done with the matrix within parenthesis in (43). Despite
this balancing, the condition number of Ri could be as high as 107. Fortunately, R is not used as system matrix in the com-
pressed Eq. (34). It is only used in composition with K�coa as a perturbation of the identity. The condition number of the sys-
tem matrix in (34) is around 600 in our examples.

Remark. CH

1 contains four coarse panels. Simply refined meshes on CH

1ði;nÞ contain six panels. These choices were made for
two reasons. First, a four-panel CH

1 makes (31) hold to high accuracy also for C with more complicated behavior close to c1.
Second, the derivation of (43) relies on a decomposition similar to (31), but involving K�i . For that decomposition to hold to
high accuracy when Kðs; zÞ� comes from a singular operator, K�i must refer to a discretization on a mesh that is at least simply
refined with respect to a uniform four-panel mesh. In Ref. [8], the underlying kernels were smoother and we worked with
smaller meshes in the recursion.
7. Recursive reconstruction of fin and the action of X

After ~qcoa has been obtained from (34) one may wish to reconstruct qfin of (28). This can be achieved by, loosely speaking,
running (43) backwards. Let ~qcoa;n be the restriction of ~qcoa to CH

1 and define
~qfin;n ¼ Pn~qcoa;n; ð45Þ
where Pn is the restriction of P of Section 5 to CH

1 . Then define
~qfin;i�1 ¼ Iþ K�i�1

	 

Iþ K�i
	 
�1

~qfin;i ¼ I� K�}i Iþ K�i
	 
�1

h i
~qfin;i; i ¼ n; . . . ;1; ð46Þ
where all matrices have dimension 32ðnþ 2Þ � 32ðnþ 2Þ; I is the identity, K�n is the restriction of Kfin to CH

1 ;K
�
i is K�n with ele-

ments in a frame of width 16ðn� iÞ set to zero, and K�}i ¼ K�i � K�i�1. The first and last 16ðn� iÞ elements of the column vector
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~qfin;i coincide with values of qfin on CH

1 . The remaining elements of ~qfin;i correspond to a transformed discrete density associ-
ated with a weighted inverse computed on an ðn� iÞ-ply refined mesh on CH

1ði;nÞ, rather than on an n-ply refined mesh on CH

1 .
Now (46) can be compressed using quantities from Section 6
~qcoa;i ¼ I� K�i FfR�1
i�1g þ I� þ K�i

� ��1
� �

Pbc~qcoa;i; i ¼ n; . . . ;1; ð47Þ
where the 64 elements ~qcoa;i are taken as elements {17:80} of~qcoa;iþ1 for i < n. The 32 elements {1:16} and {81:96} of~qcoa;i are
the reconstructed values of qfin on the outermost panels of a simply refined mesh on CH

1ði;nÞ. The 64 elements {17:80} of~qcoa;i

are the discrete values of a transformed density associated with a compressed weighted inverse computed on CH

1ði;nÞ. After the
recursion is completed, the reconstructed values on the four innermost panels are obtained from
R0~qcoa;0: ð48Þ
Should one wish to obtain the values of qcoa, that is, the action of S on ~qcoa, see (36), one can simply apply Q of Section 5 to qfin.
The action of X on ~qcoa in (39) can be computed via restriction and addition of the vectors
L�i I� þ FfRi�1gð Þ~qcoa;i; i ¼ n; . . . ;1: ð49Þ
8. Numerical examples for Laplace’s equation

This section demonstrates the performance of n-step recursive compressed inverse preconditioning on a coarse grid (34)
with (35) and (43). The goal is to compute UðzÞ of (21) and nz � rUðzÞ of (24). The geometry and the mesh is that of Fig. 1,
which means that (34) has 1344 unknowns. The underlying integral equation is the system (22) and (23). The hypersingular
integral operator in (23) is discretized with local panelwise evaluation (12) for z on panels neighboring to c1 and c2 and with
local regularization (11) otherwise. For comparison we also test non-compressed discretization on an n-ply refined mesh
(28), which has 1344þ 64n unknowns. One could, perhaps, regard (28) as an instantiation of a standard integral equation
scheme; in many ways typical of those used for mixed problems in computational materials science.

Two examples of boundary conditions gDðzÞ and gNðzÞ are used. The first example is constructed from a closed form
solution
UðzÞ ¼ R
X3

k¼1

1
z� Sk

( )
; ð50Þ
where S1 ¼ 1:4þ 1:4i;S2 ¼ �0:25þ 1:4i, and S3 ¼ �0:5� 1:4i are sources outside of X, see Fig. 1. Obviously, these boundary
conditions give a smooth UðzÞ. The second example is constructed by keeping gNðzÞ compatible with (50) while setting
gDðzÞ ¼ 0. Then there is no closed form solution and UðzÞ is not smooth. In fact, nz � rUðzÞ diverges on CD close to c1 and
c2. Fig. 3 depicts the density qðtÞ along C for the two examples. Despite the differences in UðzÞ, the two qðtÞ are similar. They
both have

ffiffi
s
p

singularities on CD and 1=
ffiffi
s
p

singularities on CN, where s is the distance to the closest singular boundary point.
A difference is that the asymptotic regimes are much more narrow for the second example than for the first. Particularly so
close to t ¼ �p.

We compute UðzÞ at 1000 evenly distributed points z in X, not closer than 1.5 panel lengths to C. Fig. 4 shows convergence
in Euclidean norm. There are major differences between the solution schemes. Non-compressed discretization (28) is unsta-
ble and produces converging results only up to a 20-ply refined mesh. Recursive compressed inverse preconditioning (34) is
stable. Results accurate to 100�mach are produced for any number of recursion steps beyond 40. The differences between the
two examples of boundary conditions are minor.This is so since neither scheme is derived under any explicit smoothness
assumptions on UðzÞ. It is the resolution of qðtÞ, see Fig. 3, or its transformed counterparts, that controls convergence. Recur-
sive compressed inverse preconditioning is derived under the assumption that the right-hand side of the integral equation is
piecewise smooth, which holds for both examples of boundary conditions.

Not only is (34) superior when it comes to convergence in UðzÞ; z 2 X. It also does a better job than (28) in terms of con-
vergence in the GMRES solver. Fig. 5 shows that the number of iterations with (34) is constant and independent of n. With
(28) it grows with refinement. The computational cost for (34) is evenly distributed between the recursion (43) and the main
system (34). It takes around 0.15 s to solve (34). With n ¼ 50 steps in (43), the time spent on constructing R is around 0.25 s.

Now we compute UðzÞ on CN and nz � rUðzÞ on CD. Recursive compressed inverse preconditioning (34) needs the post-
processor (39), where the action of the compressed matrix X on ~qcoa is computed as outlined in Section 7. Fig. 6 illustrates
convergence for the first example of boundary conditions. Comparison with Fig. 4 shows that the Neumann–Dirichlet map
on CN is as accurate and rapidly converging as the values of UðzÞ at interior points. The Dirichlet–Neumann map on CD is less
well conditioned. Nevertheless, (34) outperforms (28) on both parts of the boundary. Non-compressed discretization (28)
does, in fact, not converge at all in L2-norm for the Dirichlet–Neumann map. The errors close to the singular boundary points
diverge. That is why the L1 norm is used in Fig. 6.
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9. Integral equations for planar elasticity

Let the domain X now consist of an elastic medium with shear modulus l and a material parameter , which under plane
strain conditions and with Poisson’s ratio m is
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, ¼ 3� 4m P 1; ð51Þ
see Section 32 of [14]. Displacement UðzÞ ¼ ðux;uyÞ is prescribed along CD and traction T ðzÞ ¼ ðtx; tyÞ is prescribed along CN,
that is, gDðzÞ ¼ UprðzÞ and gNðzÞ ¼ T prðzÞ. We want to determine the elastic fields inside X. The governing partial differential
equation for this problem can formulated in several ways, see Section 39 of [13] or Section 2 of [5].



J. Helsing / Journal of Computational Physics 228 (2009) 8892–8907 8903
Efficient algorithms for planar elasticity can often be constructed via two analytic functions /ðzÞ and wðzÞ, called Goursat
functions. These are simply related to displacement, stress, and traction. See Section 40 of [13]. In particular, on the boundary
holds
lim
X3s!z

1
2l

,/ðsÞ � s/0ðsÞ � wðsÞ
� �

¼ gDðzÞ; z 2 CD; ð52Þ

lim
X3s!z

2nzR UðsÞf g � nz zU0ðsÞ þWðsÞ
� �

¼ gNðzÞ; z 2 CN; ð53Þ
where bar means complex conjugation, UðzÞ ¼ /0ðzÞ, and WðzÞ ¼ w0ðzÞ. In general, boundary integral equations can be ob-
tained by first choosing integral representations for /ðzÞ and wðzÞ and then enforcing the boundary conditions. If the repre-
sentations are cleverly made, the resulting integral equation will be of Fredholm’s second kind with compact operators or
singular with a dominating non-singular part, that is, of the type
xðzÞ þ B
pi

Z
C

xðsÞds
s� z

þ 1
pi

Z
C
xðsÞKðs; zÞds ¼ gðzÞ; jBj < 1; z 2 C; ð54Þ
where xðzÞ is an unknown complex layer density and the second integral operator is compact. Note that if jBj > 1, the
Cauchy singular operator is dominating, the solution to (54) is not unique, additional constraints have to be added, and
reduction is necessary for the integral equation to be numerically tractable, see Section 109 of [15]. Section 56 of [13]
and Ref. [21] give examples of successful representations of /ðzÞ and wðzÞ for some planar elastic problems with pure
boundary conditions.

Natroshvili and Zazashvili recently suggested a new representation of the Goursat functions for a mixed boundary value
problem on an elastic composite with interior cracks [16], that is, a generalization of our setup. The purpose of their work is
to prove uniqueness of the solution. Here we suggest the following representation for the mixed problem of elasticity, better
suited for numerics
/ðzÞ ¼ 1
2pi

Z
CD

xðsÞds
s� z

� 1
2pi

Z
CN

xðsÞ logðs� zÞds; z 2 X; ð55Þ

wðzÞ ¼ 1
2pi

Z
CD

xðsÞds
s� z

� ,
2pi

Z
CD

xðsÞds
s� z

� 1
2pi

Z
CD

xðsÞsds
ðs� zÞ2

� ,
2pi

Z
CN

xðsÞ logðs� zÞds� 1
2pi

Z
CN

xðsÞsds
s� z

; z 2 X:

ð56Þ
Insertion of (55) and (56) into (52) and (53) gives the system
xðzÞ þ 1
p

Z
CD

xðsÞI ds
s� z

� �
þ 1

2,pi

Z
CD

xðsÞ ds
s� z

� ðs� zÞds
s� z2

� �
�
Z

CN

xðsÞðs� zÞds
s� z

" #
� 1

pi

Z
CN

xðsÞ log js� zj ds

¼ 2l
,

gDðzÞ; z 2 CD; ð57Þ

xðzÞ þ 1
ð,þ 1Þpi

Z
CD

xðsÞ ds
ðs� zÞ2

� ,
nz

nz

ds
ðs� zÞ2

 !"
�
Z

CD

xðsÞ ds
ðs� zÞ2

� nz

nz

ds
ðs� zÞ2

þ nz

nz

2ðs� zÞds
ðs� zÞ3

 !

þ ð,� 1Þnz

nz

Z
CN

xðsÞds
s� z

þ
Z

CN

xðsÞ ds
s� z

þ nz

nz

ds
s� z

� �
�
Z

CN

xðsÞ ds
s� z

þ nz

nz

ðs� zÞds
ðs� zÞ2

 !#
¼ 2

,þ 1
nzgNðzÞ; z 2 CN:

ð58Þ
This system may look complicated at first glance, but away from c1 and c2 it is of the type (54) with B ¼ 0 for z 2 CD and with
jBj ¼ ð,� 1Þ=ð,þ 1Þ < 1 for z 2 CN; integral operators containing kernels within large parenthesis are either smooth or not
evaluated at points where they would be singular. The logarithm in (57) is real valued. One does not have to worry about
branches.

Once the system (57) and (58) is solved for xðzÞ, the displacement can be computed via
UðzÞ ¼ ,
2lp

Z
CD

xðsÞI ds
s� z

� �
þ 1

4lpi

Z
CD

xðsÞ ds
s� z

� ðs� zÞds
ðs� zÞ2

 !
� 1

4lpi

Z
CN

xðsÞðs� zÞds
s� z

� ,
2lpi

Z
CN

xðsÞ log js� zjds; z 2 X [ CN: ð59Þ
The traction on CD is
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T ðzÞ ¼ ð1� ,Þnz

2
dxðzÞ

dz
þ nz

2pi

Z
CD

xðsÞ ds
ðs� zÞ2

� ,
nz

nz

ds
ðs� zÞ2

 !"

�
Z

CD

xðsÞ ds
ðs� zÞ2

� nz

nz

ds
ðs� zÞ2

þ nz

nz

2ðs� zÞ ds
ðs� zÞ3

 !
þ ð,� 1Þnz

nz

Z
CN

xðsÞds
s� z

þ
Z

CN

xðsÞ ds
s� z

þ nz

nz

ds
s� z

� �

�
Z

CN

xðsÞ ds
s� z

þ nz

nz

ðs� zÞ ds
ðs� zÞ2

 !#
; z 2 CD; ð60Þ
where the differentiation in the first term is taken along C.
At this point we wish to emphasize the strong analogies in structure between planar elasticity and Laplace’s equation in

our presentation. The boundary conditions (52) and (53) correspond to (19) and (20). The representations (55) and (56) cor-
respond to (21) with z 2 X. The system (57) and (58) correspond to (22) and (23). The expressions (59) and (60) correspond
to (21) and (24). We could continue to write out analogous equations corresponding to all equations of Sections 5–7, but
refrain from doing so since the process is straight-forward from now on.
10. Numerical examples for planar elasticity

This section parallels Section 8, but with Laplace’s equation replaced with the equations of planar elasticity. When the
setups and the numerical results are similar to those of Section 8, we shall be brief.

Integral operators with Cauchy singular kernels are discretized with local panelwise evaluation (5) for z on panels neigh-
boring to c1 and c2, with local regularization (4) for z on other panels in CH

1 and CH

2 , and with global regularization (3) other-
wise. Integral operators with hypersingular kernels are treated as in Section 8. We take advantage of the fact that
ðs� zÞ=ðs� zÞ is smooth on smooth boundaries. Non-smooth boundaries would, in addition, require quadrature for the ker-
nel 1=ðs� zÞ3. A first example of boundary conditions gDðzÞ and gNðzÞ comes from a closed form solution
/ðzÞ ¼
X3

k¼1

1
z� Sk

and wðzÞ ¼ z2; ð61Þ
where the Sk are as in (50). A second example is constructed by keeping gNðzÞ compatible with (61) while setting gDðzÞ ¼ 0.
Elastic parameters are chosen as l ¼ 0:5 and , ¼ 2:5.

Fig. 7 shows convergence for the displacement UðzÞ at 1000 points z 2 X, placed as in Section 8. The convergence is very
similar to that of UðzÞ for Laplace’s equation in Fig. 4, although one more digit is lost for the second example of boundary
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conditions. The number of GMRES iterations, not shown, exhibits the same dependence on the number n of subdivisions or
recursion steps as in Fig. 5, but is twice as large for a given n.

Fig. 8, analogous to Fig. 6, shows convergence for the Neumann–Dirichlet map on CN and the Dirichlet–Neumann map on
CD. Again, recursive compressed inverse preconditioning on a coarse grid (34) outperforms the standard scheme (28) in vir-
tually every respect.

Strictly speaking, a boundary value problem is not properly solved until the solution can be accurately evaluated in the
entire computational domain. So far we have presented convergence of solutions on C and in X but not too close to C. Accu-
rate evaluations very close to, but off, C are more demanding programming wise. With a little effort, however, excellent re-
sults can be obtained in several ways [7]. As an example, let us compute the trace of the stress tensor
rxx þ ryy ¼ 4RfUðzÞg; z 2 X: ð62Þ
This problem is sufficiently simple for globally compensated quadrature to apply, which is the least intricate of the methods
discussed in [7], see also [10]. From (55) follows
UðzÞ ¼ 1
2pi

Z
C

hðsÞ ds
s� z

; z 2 X; ð63Þ
where
hðsÞ ¼ dxðsÞ
ds

; s 2 CD; and hðsÞ ¼ xðsÞ; s 2 CN; ð64Þ
and we have used
lim
s2CD!ci

xðsÞ ¼ 0; i ¼ 1;2: ð65Þ
The limit value on C (from the interior) is
UðzÞþ ¼ hðzÞ
2
þ 1

2pi

Z
C

hðsÞ ds
s� z

; z 2 C; ð66Þ
and one can now evaluate UðzÞ arbitrarily close to C via
UðzÞ ¼
PN

k¼1
UþðskÞs0kwk

sk�zPN
k¼1

s0
k
wk

sk�z

; z 2 X: ð67Þ
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A cartesian grid of 1000� 1000 points z ¼ xþ iy is created in the square x 2 ½�1:225;1:375
; y 2 ½�1:3;1:3
. Out of these,
484,670 points are located in X and some are very close to C. The first example of boundary conditions is chosen and the
elasticity analogue of (34) is solved as above. For maximum accuracy and to illustrate stability with respect to overresolution
we take 96 panels for the coarse mesh on C and n ¼ 100 steps in all recursions. The Cauchy integral in (66) is computed from
values of hðsÞ on the fine grid and by global regularization (3), where the fast multipole method is used with the origin placed
both at c1 and at c2 (for different parts of the integral) as to reduce cancellation. The reconstruction of xfin, needed for hðsÞ on
the fine grid in (64), is computed via the elasticity analogue of (47). The final field evaluation (67) is done with two regular
fast multipole calls. The MATLAB code is far from ideal, speed wise, and the total running time for the full computation is
around 24 seconds. About 75% of this time is spent in the post-processor.

Fig. 9 shows the pointwise relative error, in max norm, at the 484,670 internal points. The error is typically around 10�12

and nowhere greater than 4:7� 10�11. Not even close to c1 and c2, where hðzÞ diverges. This is satisfying and in accordance
with the error in traction on CD, see Fig. 8.

11. Discussion

This paper demonstrates that the combination of

� integral equations which are of Fredholm’s second kind with compact operators except for close to a finite number of
boundary points

� high-order accurate composite quadrature
� multilevel compression

produces fast and accurate results for elliptic problems with mixed boundary conditions. If one or more of these items are
lacking, an integral equation scheme is less likely to excel compared to other techniques such as the finite element method.
Its stability may even be in jeopardy.

Particular features of our paper are unified treatment and robust solution strategies; the same techniques are used irre-
spective of whether a singularity stems from a change of boundary conditions or from the boundary itself, the same recur-
sions are used for a wide range of singular operators. We believe that our techniques could be extended to many problems,
also in three dimensions. What needs to be worked out fresh is, essentially, integral equations of the right type. If this pays
off in difficult situations is another question, whose answer may depend on what is of primary concern – accuracy and sta-
bility or storage and speed. We refrain from further speculations with one exception: The extension of the present scheme to
multiple portions of the boundary with different boundary conditions is straight-forward. Nowhere in the derivation of the
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scheme we have used that C of Fig. 1 only has two singular boundary points. Furthermore, Section 11 of Ref. [8] gives an
example where recursive compressed inverse preconditioning is successfully applied to a connected boundary containing
over ten thousand points with geometric singularities.

We hope that these findings will contribute to greater flexibility and applicability of integral equation methods, primarily
for mixed planar problems in elasticity and Stokes flow.
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